巅峰极客-2023

Crypto

数学但高中

题解

给了一堆数学函数,然后就是画出这些函数图像,就是flag

在线画图网站:Desmos | 图形计算器

Simple_encryption

题目

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from Crypto.Util.number import *
import gmpy2
import random
import binascii
from secret import flag

p = getStrongPrime(1024)
q = getStrongPrime(1024)
N = p * q
g, r1, r2 = [getRandomRange(1, N) for _ in range(3)]
g1 = pow(g, r1 * (p - 1), N)
g2 = pow(g, r2 * (q - 1), N)


def encrypt(m):
s1, s2 = [getRandomRange(1, N) for _ in range(2)]
c1 = (m * pow(g1, s1, N)) % N
c2 = (m * pow(g2, s2, N)) % N
print("c1=", c1)
print("c2=", c2)
return (c1, c2)


c = encrypt(bytes_to_long(flag[:len(flag) // 2]))
print('N=', N)
print('g1=', g1)


def pad(msg, length):
l = len(msg)
return msg + (length - l) * chr(length - l).encode('utf-8')


p = getStrongPrime(1024)
q = getStrongPrime(1024)
assert (p != q)
n = p * q
e = 5
d = inverse(e, (p - 1) * (q - 1))
assert (e * d % (p - 1) * (q - 1))

flag = pad(flag[len(flag) // 2:], 48)
m = [int(binascii.b2a_hex(flag[i * 16:i * 16 + 16]).decode('utf-8'), 16) for i in range(3)]
print('S=', sum(m) % n)
cnt = len(m)
A = [(i + 128) ** 2 for i in range(cnt)]
B = [(i + 1024) for i in range(cnt)]
C = [(i + 512) for i in range(cnt)]
Cs = [int(pow((A[i] * m[i] ** 2 + B[i] * m[i] + C[i]), e, n)) for i in range(cnt)]
print('N=', n)
print('e=', e)
print('Cs=', Cs)

'''
c1= 19024563955839349902897822692180949371550067644378624199902067434708278125346234824900117853598997270022872667319428613147809325929092749312310446754419305096891122211944442338664613779595641268298482084259741784281927857614814220279055840825157115551456554287395502655358453270843601870807174309121367449335110327991187235786798374254470758957844690258594070043388827157981964323699747450405814713722613265012947852856714100237325256114904705539465145676960232769502207049858752573601516773952294218843901330100257234517481221811887136295727396712894842769582824157206825592614684804626241036297918244781918275524254
c2= 11387447548457075057390997630590504043679006922775566653728699416828036980076318372839900947303061300878930517069527835771992393657157069014534366482903388936689298175411163666849237525549902527846826224853407226289495201341719277080550962118551001246017511651688883675152554449310329664415179464488725227120033786305900106544217117526923607211746947511746335071162308591288281572603417532523345271340113176743703809868369623401559713179927002634217140206608963086656140258643119596968929437114459557916757824682496866029297120246221557017875892921591955181714167913310050483382235498906247018171409256534124073270350
N= 21831630625212912450058787218272832615084640356500740162478776482071876178684642739065105728423872548532056206845637492058465613779973193354996353323494373418215019445325632104575415991984764454753263189235376127871742444636236132111097548997063091478794422370043984009615893441148901566420508196170556189546911391716595983110030778046242014896752388438535131806524968952947016059907135882390507706966746973544598457963945671064540465259211834751973065197550500334726779434679470160463944292619173904064826217284899341554269864669620477774678605962276256707036721407638013951236957603286867871199275024050690034901963
g1= 20303501619435729000675510820217420636246553663472832286487504757515586157679361170332171306491820918722752848685645096611030558245362578422584797889428493611704976472409942840368080016946977234874471779189922713887914075985648876516896823599078349725871578446532134614410886658001724864915073768678394238725788245439086601955497248593286832679485832319756671985505398841701463782272300202981842733576006152153012355980197830911700112001441621619417349747262257225469106511527467526286661082010163334100555372381681421874165851063816598907314117035131618062582953512203870615406642787786668571083042463072230605649134
S= 234626762558445335519229319778735528295
N= 28053749721930780797243137464055357921262616541619976645795810707701031602793034889886420385567169222962145128498131170577184276590698976531070900776293344109534005057067680663813430093397821366071365221453788763262381958185404224319153945950416725302184077952893435265051402645871699132910860011753502307815457636525137171681463817731190311682277171396235160056504317959832747279317829283601814707551094074778796108136141845755357784361312469124392408642823375413433759572121658646203123677327551421440655322226192031542368496829102050186550793124020718643243789525477209493783347317576783265671566724068427349961101
e= 5
Cs= [1693447496400753735762426750097282582203894511485112615865753001679557182840033040705025720548835476996498244081423052953952745813186793687790496086492136043098444304128963237489862776988389256298142843070384268907160020751319313970887199939345096232529143204442168808703063568295924663998456534264361495136412078324133263733409362366768460625508816378362979251599475109499727808021609000751360638976, 2240772849203381534975484679127982642973364801722576637731411892969654368457130801503103210570803728830063876118483596474389109772469014349453490395147031665061733965097301661933389406031214242680246638201663845183194937353509302694926811282026475913703306789097162693368337210584494881249909346643289510493724709324540062077619696056842225526183938442535866325407085768724148771697260859350213678910949, 5082341111246153817896279104775187112534431783418388292800705085458704665057344175657566751627976149342406406594179073777431676597641200321859622633948317181914562670909686170531929552301852027606377778515019377168677204310642500744387041601260593120417053741977533047412729373182842984761689443959266049421034949822673159561609487404082536872314636928727833394518122974630386280495027169465342976]
'''

题解

分析前一段 这题求出后,是1024位,所以很大概率就是

1
2
3
4
5
6
7
8
9
10
from Crypto.Util.number import *
import gmpy2

N = 21831630625212912450058787218272832615084640356500740162478776482071876178684642739065105728423872548532056206845637492058465613779973193354996353323494373418215019445325632104575415991984764454753263189235376127871742444636236132111097548997063091478794422370043984009615893441148901566420508196170556189546911391716595983110030778046242014896752388438535131806524968952947016059907135882390507706966746973544598457963945671064540465259211834751973065197550500334726779434679470160463944292619173904064826217284899341554269864669620477774678605962276256707036721407638013951236957603286867871199275024050690034901963
g1 = 20303501619435729000675510820217420636246553663472832286487504757515586157679361170332171306491820918722752848685645096611030558245362578422584797889428493611704976472409942840368080016946977234874471779189922713887914075985648876516896823599078349725871578446532134614410886658001724864915073768678394238725788245439086601955497248593286832679485832319756671985505398841701463782272300202981842733576006152153012355980197830911700112001441621619417349747262257225469106511527467526286661082010163334100555372381681421874165851063816598907314117035131618062582953512203870615406642787786668571083042463072230605649134
c1 = 19024563955839349902897822692180949371550067644378624199902067434708278125346234824900117853598997270022872667319428613147809325929092749312310446754419305096891122211944442338664613779595641268298482084259741784281927857614814220279055840825157115551456554287395502655358453270843601870807174309121367449335110327991187235786798374254470758957844690258594070043388827157981964323699747450405814713722613265012947852856714100237325256114904705539465145676960232769502207049858752573601516773952294218843901330100257234517481221811887136295727396712894842769582824157206825592614684804626241036297918244781918275524254
p = gmpy2.gcd(N, g1 - 1)
print(p)
m = c1 % p
print(long_to_bytes(m))

第二部分的又被分成三份,每份16字节

都已知,那么求每段就可以在模下,构造三次来求解,每段

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# sage
from Crypto.Util.number import *
n = 28053749721930780797243137464055357921262616541619976645795810707701031602793034889886420385567169222962145128498131170577184276590698976531070900776293344109534005057067680663813430093397821366071365221453788763262381958185404224319153945950416725302184077952893435265051402645871699132910860011753502307815457636525137171681463817731190311682277171396235160056504317959832747279317829283601814707551094074778796108136141845755357784361312469124392408642823375413433759572121658646203123677327551421440655322226192031542368496829102050186550793124020718643243789525477209493783347317576783265671566724068427349961101
e = 5
Cs = [1693447496400753735762426750097282582203894511485112615865753001679557182840033040705025720548835476996498244081423052953952745813186793687790496086492136043098444304128963237489862776988389256298142843070384268907160020751319313970887199939345096232529143204442168808703063568295924663998456534264361495136412078324133263733409362366768460625508816378362979251599475109499727808021609000751360638976, 2240772849203381534975484679127982642973364801722576637731411892969654368457130801503103210570803728830063876118483596474389109772469014349453490395147031665061733965097301661933389406031214242680246638201663845183194937353509302694926811282026475913703306789097162693368337210584494881249909346643289510493724709324540062077619696056842225526183938442535866325407085768724148771697260859350213678910949, 5082341111246153817896279104775187112534431783418388292800705085458704665057344175657566751627976149342406406594179073777431676597641200321859622633948317181914562670909686170531929552301852027606377778515019377168677204310642500744387041601260593120417053741977533047412729373182842984761689443959266049421034949822673159561609487404082536872314636928727833394518122974630386280495027169465342976]
A = [(i + 128) ^ 2 for i in range(3)]
B = [(i + 1024) for i in range(3)]
C = [(i + 512) for i in range(3)]
flag=b''
for i in range(3):
PR.<x>=PolynomialRing(Zmod(n))
f=Cs[i]-(A[i]*x^2+B[i]*x+C[i])^e
x0=f.monic().small_roots(X=2^128,beta=0.4)[0]
x0=int(x0)
flag=flag+long_to_bytes(x0)
print(flag)