from Crypto.Util.number import * import gmpy2 p = 122912801126049869009003839542545176400185213365268209105714006257803073428638629824801261702125287814910668428403367391355051987389837804474055637991864563803834741161217607848968821280710324766558457056004037592628178078680121173634128054936108782807954132605887275556228703383455969903056759874047110115433 q = 120790113700754477830062212762518406876786376726996249661848284428829412089402183812692045970711341815805796005449714738748110749559462448861357011272792817313060401380148108517705435100103533857957024851181447994572972501120774586405811257420853542417275740953525627232008812587423053626515513859653865873671 e = 65537 c = 7094224488947659163318199615533819770556597977720767621640224798887506152292861133457571683713587909779712343346370719403811813233693263526316785431883833118583425528830238629831001255198236686372518770451273159769779374149881346761523688131115323441973953523582174059584087249568245044443295176738493785560215046375056269378223045128094953923926250055718405799885041115025529297362914403732661935017257507786348635366480744933193471899621592092711962814949533564454932121056035003021428158830645604347966849572981124877683317022116903132719663958775850982016292384237647664448371811915879714093710876989697939277005 d = gmpy2.invert(e, (p-1)*(q-1)) m = pow(c, d, p*q) print(long_to_bytes(m))
n = 62950660589752377241535942010457460675378335694404721223426371627802159493655570041534480026979837056215567303530448462076388942749116962945931432723672826148999814815864738069663127706046027850586024555861960247057288826014343547293035737544457656904257388300461848219257240252715837662741274235378360898441 c = 26392919777656338278184497106215581599692023606797351841011065350738534402079717897589592521000832026751736045905247050532819571969784687491977953157313304550096179520376626220816081159472339787295872214912587497324709488986746768994907107727184468228540635002062232484115731701648311946527233449512543132274 dp = 7088497034630351463006975624795947102639056977565074157092915907376477955247769847204254053775159112398217033648894620506901638351932922911273150932128973 e = 65537 for i inrange(1, 65535): p = (dp * e - 1) // i + 1 if n % p == 0: q = n // p break print(p) print(q) phi_n = (p - 1) * (q - 1) d = gmpy2.invert(e, phi_n) m = pow(c, d, n) flag = long_to_bytes(int(m)) print(flag)
from Crypto.Util.number import * import gmpy2 n = 24981376790941538042242194741227892897407513396986731688877133454927442860995432316502739082570143505514748189761926835267759902439088795405888334103808204493954060044146586606969762154041793765844462081845490598211667272961234605967919438875499785814549051002289336390400088945736443426364361032870741024016549739096474413537901098157940458928277363388694717514323106251487767419607466664175936942972759711506228656400164583540573319572125036265662330306877811831045019686459493451558882811173136631573392182233161484350878695026357462290962322316959710815852914274474767115283825849610223430527125542218326259388501 e = 65537 c = 20159395346151098135636315342962498279920000537186367678734614295342297238729946157173169398141183795295342421626812913110784320710149318393656661582157610182569479131625808166266400522513050071081253869746865806961410702124426021839786686971490883603141916263075756918270160269956469968815381434371042453456185750940323619568741956243054983302281739844073931738335165924679149156513059772597287311150001080524533236565521881558592378167621577532597521749930820990533120461791013359786254216859344006298715497621642857727174896969485816794718062289736382736417151820935214824518306312811267158057425922650562544599188
deffermat(n, d): while1: x = int(gmpy2.iroot(n, 2)[0]) + d y_2 = x * x - n if gmpy2.iroot(y_2, 2)[1]: print("第一个因子为") print(x + int(gmpy2.iroot(y_2, 2)[0])) p = x + int(gmpy2.iroot(y_2, 2)[0]) print("第二个因子为") print(x - int(gmpy2.iroot(y_2, 2)[0])) q = x - int(gmpy2.iroot(y_2, 2)[0]) print("") break d = d + 1 return p, q
p, q = fermat(n, 1) phi = (p-1)*(q-1) d = gmpy2.invert(e, phi) m = pow(c, d, n) print(long_to_bytes(m))
Classical Cipher
先rabbit解密(无密钥),然后栅栏加密(栏数为5),最后base解密
polynomial
在modp上求解多项式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
from Crypto.Util.number import * p = 158805288384650271811274620112885426807134870587281058486409657841571541118874370262125616758392586636436387032461169543181918821693975663497124408432536495676514953509756505781488235396628730376794651046582155886825258656047349260441547239700695773934518441411466809921946609164932234396841476405798428700843 a = 6782997653971692606019358747667066963688636909392719204001155907616272998599567932030340899158310591583056298423803386927289244122405887173827359025095219 b = 7373784501270128110088353737302182289453185058537147667058852830178883492374394182313086562761123093282613985656842374554466162992585768060168515936322837 c = 12604317328077074383094898759023155531982085126299017370476099122695860476733267706510100804874716354025394150676456477445303955715981977583036765619931291 d = 8651550199315105291497863570314512750737000678752642987669418859342691686702373116147125246177399639155277789016646392989483699799276013474039473014389069 e = 6819653219987864110332165353640553980353581969662542365282269257622467162685937603557862048653003559950780009596692439320585574228684924030626160305559221 y = 187626421635118933741196210961559541641107643327742932086152135660947241144749750951157691964883138108211067837818748515766812840026814947057023367814232867155997328882540000727585104081833734697954005690818776434169815240704563337 h = 36198427687223295973782557044383345640934859884880641150183916728479006412929786917944908958646498915497129126843345300628359
ZmodN = Zmod(p) P.<x> = PolynomialRing(ZmodN) f = a*x^4 + b*x^3 + c*x^2 + d*x + e - y f = f.monic() x0 = f.small_roots(X=2^64, beta=0.4)[0] print(x0) m = h//x0 print(long_to_bytes(int(m)))
# 肮脏的base64 title = '0123456789qwertyuiopasdfghjklzxcvbnm+QWERTYUIOPASDFGHJKLZXCVBNM/' c = 'o57gjn0Sb9ETqVLYOJyHX42kNaIhrWlU****eszCfD+dtPm1u3AMKpwRGvcxQZ8B' for i in title: if i in c: continue else: print(i) import itertools
characters = "6iF/" permutations = list(itertools.permutations(characters)) n = [] for perm in permutations: s = ''.join(perm) n.append(s) aph = [] for i in n: temp = c aph.append(temp.replace("****",i)) # print(aph) for i in aph: print(i) import string
defbase64_decode(data, alphabet): # 构建解码映射表 decoding_table = {} for i, char inenumerate(alphabet): decoding_table[char] = i
# 解码数据 for i in aph: decoded_data = base64_decode(encoded_data, i)
print(decoded_data.decode())
dpdpdpdp
dp泄露,但是e比较大的情况
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
from Crypto.Util.number import * import gmpy2
n = 92288362151232755164303382554034496430634785857894506752180261103500715219090974532177552845107426542175470207920267802066773828210866572070045093611090322738109527534622730588618668861998969946471756352024368486322527057077613762697792913167023012077178671066981439295386486943067698150993422039585259179729 e = 229991316986730339421575788374847647237 c = 66178170892880340054212366602556925884485962775832591797127163461420023986798822926684824340567060840259672460835004142425374706821346941926520921852009455818529825976414766339170445233789109526300838535719649346266975388774091834431039678689254534566870194580604694419819400454951059125553501095973278807456 dp = 8987556601717285362487353965045062789633142861774364363374961991445049127918653163458814169532860957264061203394944931114888144611267605606197232438332289
p = gmpy2.gcd(n, pow(2, dp*e, n)-2) q = n//p assert p*q == n phi = (p-1)*(q-1) d = gmpy2.invert(e, phi) m = pow(c, d, n) print(long_to_bytes(m))
from Crypto.Util.number import * deffranklinReiter(n,e,c1,c2): R.<x> = Zmod(n)[] f1 = x^e - c1 f2 = (a*x+b)^e- c2 # coefficient 0 = -m, which is what we wanted! return Integer(n-(compositeModulusGCD(f1,f2)).coefficients()[0])
# GCD is not implemented for rings over composite modulus in Sage # so we do our own implementation. Its the exact same as standard GCD, but with # the polynomials monic representation defcompositeModulusGCD(a, b): if(b == 0): return a.monic() else: return compositeModulusGCD(b, a % b)
n = 13026126941826887019162872735099540876106694302074884925200107036130428843197729140372377590706535217469477301361486550282890330093772372813532795303163348233096919179478061917423707929667355386062657434467799360617526194768968700908096844475960205671302377364202483195391706116078632202015938962280529309403244885363904094804118278167720593581764017089021116316636464533785051436622916960956665030100255641288863474938703 a = 280807370135687531454416708417179457159 b = 210598260561987226227971066630761929397 c1 = 5484670538103757119990644460454986219076673914082966464351809153114702100411054106785392646801736865489738145857425179185164710603704198643749378051371008266521829572436350080663825339915763509501690398283916091505443322384568973565599179112299853287766734493187659418383619877040013434926843623979979122417950089001830664273269598688130410251828579862218274297572192961909808728768317567218412746711665911495028223620671 c2 = 249587944874112168607313602465869274336587750392364868939732783502223999305089384749508572630699199927194600499968110646290832205640569694933539973256281796631433129626712361622584048439446364992886884217198680921278383770604919381329363647924261642857483728973331091285820401689502291336332199019252649615680893389557508558362194551939434128389351824194393680744241807605416750291337127085044177563509645273228457253193 e=5 result = franklinReiter(n,e,c1,c2) flag = long_to_bytes(int(result)) print(flag)